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Abstract. The problem of a flat circular punch bonded to a transversely isotropic elastic 
half-space and interacting with an arbitrarily located normal concentrated load is con- 
sidered. The closed form exact solution is obtained for the linear and angular displacements 
of the punch. The solution is based on the results previously obtained by the author and 
combined with the reciprocal theorem. A numerical example is presented, in order to 
compare the linear and angular displacements of a smooth punch with the similar parameters 
for a bonded punch. 

1. Introduction 

The bonded punch problem belongs to the class of mixed-mixed problems of elasticity 
theory which are among the most complicated due to the coupling between the normal 
and tangential parameters. We should mention the works of Mossakovskii (1954) and 
Ufliand (1956) among the first published exact solutions for the case of an isotropic 
half-space, obtained by using various integral transforms. A more compact solution 
has been reported by Kapshivyi and Masliuk (1967), who used a special apparatus of 
p-analytical functions. The first elementary exact solution for a transuersely isotropic 
elastic half-space was published by Fabrikant (1971a). Four different types of solution 
of the governing set of integral equations were reported by Fabrikant (1986). The 
problem of a bonded circular punch subjected to a shifting force and a tilting moment 
was first considered by Fabrikant (1971b). 

The problem of interaction between a bonded punch and an internal point force 
is extremely important in engineering. First of all, the point force solution can be used 
as a Green function for solving more complicated problems of various distributed 
loadings. Secondly, the problem is of value in its own right. For example, in geotech- 
nical engineering it can be viewed as the problem of interaction between a rigid 
foundation and an anchor load. The problem is very complicated. Only some particular 
cases were considered until now: the case of a surface load outside a bonded punch 
was considered by Fabrikant (1975), and an axisymmetric case of a loading under a 
punch was solved by Fabrikant and Sankar (1986). The general case of an arbitrarily 
located load is considered here for the first time. The solution has become possible 
due to the new results in potential theory obtained by the author (Fabrikant, 1989). 
Numerical results are obtained in order to compare the linear and angular displacements 
of a bonded punch due to a concentrated load with similar results for a smooth punch. 
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2. Theory 

Consider a transversely isotropic elastic body which is characterised by five elastic 
constants Aik defining the following stress-strain relationships: 

aw au, 
Tz, = %4 (d,+z). 

The equilibrium equations are 

Substitution of ( 1 )  in (2) yields 

Introduce complex tangential displacements U = U, + iuy, and ti = U, - iu,. This will 
allow us to reduce the number of equations (3) by one, and to rewrite these equations 
in a more compact manner, namely 

Here the following differential operators were used: 

a a  a2 a2 
a x 2 + 2  ax ay 

A=-+i -  A=- 
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and the overbar everywhere indicates the complex conjugate value. Note also that 
A = AA. One can verify that equations (4) can be satisfied by 

aF, aF2 
w=m,-+m2- 

az az 
U = A( Fl + F2 + iF3) 

where all three functions Fk satisfy the equation (Elliott 1948) 

for k = 1 , 2 , 3  (7) 

and the values of mk and Yk are related by the following expressions (Elliott 1948): 

f o r k =  1 , 2  mkA33 
= Y'k 

&4+mk(A13+&) - - 
AI 1 m k & 4  + 3 + 4 4  

(8) 

Introducing the notation zk = z/yk, for k = 1,2,3,  we may call function Fk = F ( x ,  y, zk) 
harmonic. Note the property mlm2 = 1, which seems to have escaped the attention of 
previous researchers, and which will help us to simplify various expressions to follow. 
The other elastic constants which will be used throughout the paper are 

Y3 = (&4/&6)1'2* 

GI=P+YlY2H G2 = P - Y 1 Y 2 H  
(9) 

(AllA33) - A13 p=- Y3 a =  (Yl+ Y2)All H =  
27T(AllA33 -A;3) AII(Y1 + Y2) 2TA44' 

Introduce the following in-plane stress components: 

U1 = ux + ay u2 = ax - ay + 2i rXy T~ = T,, + iTyZ. (10) 
This will simplify expressions ( l ) ,  namely 

a w  
= (All -&6)(iiU +At?)-t2A13 - 

az U2 = 2&6AU 

(11) 

We have now only four components of stress, instead of six, as it was in (1). The 
substitution of (6) in (1 1) yields 

u2 = 2&6A2( F1 + F2 + iF3) 

= -&A[ ( 1 + m 1 F1 + ( 1 + m2 F2] 

a 
az 

T~ =&A - [( 1 + m,)Fl  + (1 + m2)F2+iF3]. 

Here we used the fact that each Fk satisfies equation (7) ,  and the relation Ally: - 
AI3mk = 4 ( 1 + m k )  (for k =  1,2), which is an immediate consequence of (8). 
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Expressions (6) and (12) give a general solution, expressed in terms of three harmonic 
functions Fk. It is very attractive to express each function Fk through just one harmonic 
function as follows: 

Fk(x, y ,  z)  CkF(X, y ,  z )  (13) 

where z k  = z / y k ,  and c k  is an as yet unknown complex constant. As we shall see 
further, this is possible indeed. All the results obtained in the paper are valid for 
isotropic solids, provided that we take 

1 - v 2  1 -2v 
H = -  a=- 

lTE 2(1- v )  Y1 = Y2 = Y3 = 1 

l + v  (2  - U)( 1 + U )  v ( l +  U )  p =- GI = G 2 = -  
T E  lTE T E  

where E is the elastic modulus, and v is the Poisson coefficient. 
Consider a transversely isotropic elastic half-space Z L O .  Let a point force, with 

components T', Ty, and P in Cartesian coordinates be applied at the point No located 
at the boundary z = 0 of a transversely isotropic elastic half-space. We may assume, 
without loss of generality, that the polar cylindrical coordinates of No are ( p o ,  do, 0). 
We need to find the field of stresses and displacements at the point M ( p ,  4 , ~ ) .  
Introduce the complex tangential force T =  T,+iT,. The general solution can be 
expressed through the three potential functions: 

F2=- Hy2  [+ y1 ( Ax2 + A,F2) + P In( R2 + z 2 ) ]  
m2- 1 

Here 

for k = 1,2,3 2 1/2  
X k  ( z )  = X ( z k  Rk = [ p 2 + p ~ - 2 p p O c o s ( 4  - 4 0 ) + z k l  

(16) 
~ ( z )  = T[z ln(Ro+z)  - R,] Ro = [ p 2  + p i  - 2pp, cos( 4 - 4 0 )  + z 2 ]  II2. 

Substitution of (15) and (16) in (6) yields 

.=-(-+ Y3 T 927 
4 r A 4  R3 R3(R3+z3)'  
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Here 

We consider a transversely isotropic elastic half-space z 3 0 (figure 1). A flat circular 
punch of radius a is bonded to its boundary z =0,  with the punch centre coinciding 
with the coordinate system origin p = 0. Let a point force N be applied in the Oz 
direction at the point with the polar cylindrical coordinates (p ,  4, z ) .  We may assume, 
without loss of generality, that 4 = 0. We need to find the punch settlement w N ,  its 
tangential displacement uN, and the angle of inclination SN which are due to the point 
load N. The reader is reminded that the punch settlement is understood to be the 
normal displacement of the punch centre; the angle of inclination is the angle between 
the punch base and the plane z = 0. 

First of all, we need to solve two auxiliary problems: one is the centrally loaded 
bonded punch, and the second one is the problem of an inclined bonded punch. We 
consider below each problem separately, after which the reciprocal theorem is used 
to obtain the solution to the main problem. 

Problem 1. We consider the mixed-mixed problem characterised by the following 
boundary conditions: 

u = o  for O S p c a  O S 4 < 2 V  

7 = 0  for a s p c o o  0 S f # J < 2 T  

The solution to the problem may be presented in the form (Fabrikant 1986) 

Rigid circular punch 

/ Bonded c o n t a c t 7  

I L I 
Y Y 

Figure 1. 
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Here U is the normal traction exerted by the punch, T~ = T ~ , , + ~ T ~ ~ ,  and the stress 
functions f, and f2 are defined in this particular case by 

WO 

x H  

WO 

x H  

f , (x)  = -7 cosh r e  COS 

f2(x) = -7 cosh xTTe sin 

where wo is the punch settlement. In the case of isotropy, the value of 0 is defined by 
8 = (1/2x)  ln(3 -4v). 

Now we need to substitute formulae (21) in (15), modified for the case of distributed 
loading, and to compute the integrals involved. Here are some detailed of the derivation. 
Substitution of the first expression (21) in (15) leads to the integral 

Z, = /02r loa ln(Ro+z) 

By interchanging the order of integration in (23), we obtain 

The double integral in (24) can be computed by using (Al)-(A4), with the result 

I, = -2x f l (x)  In{Z2(x)+[l~(x)-p2]”2} dx. l: 
The following notation is used throughout the paper: 

Il(X, p, z) = I,(x) = + { [ ( p  + x)’ + z’] - [ ( p  - x)’+ z2I1/’} 

l’(X, p, z) = l’(X) = +{[ ( p  + x)’ + z’] I / ’  + [ ( p  - x)’ + z’] I/’}.  
(25) 

The abbreviations lI and l2 everywhere stand for Z,(a) and Z2(a) respectively. The 
notation /lk(X) and &(X)  is understood as Zl(x, p, z k )  and Z2(x, p, zk) respectively, for 
k = 1,2. 

When substituting the second expression of (21) in (15), we have to remember the 
relationship between T = T,, + iTyz and T~ = T ~ , ,  + iTer, namely, T = rP ei’. The substitu- 
tion leads to the integral 

Z 2 = A  lozWjoa [ z ln (Ro+z) -Ro]e - i ’opodpod~o-  

Again, interchanging the order of integration, we obtain 

dx d dpo d+o 
Z2 = -A j: f2( x ) - x - dx lo2= jox [ z In( Ro + z ) - R,] e --% (x’ - I / ’ ’  

The double integral in (26) can be computed according to (A7)-(A10), and the final 
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result is rather simple 

Now the potential functions (15) can be expressed through the stress functions as 
follows: 

F3 = 0. 

Taking into consideration ( 2 2 ) ,  formulae (28) may be rewritten as 

F, = 0 

where wo is the punch settlement, 8 is defined by ( 2 2 )  and 

(30) 

Substitution of ( 2 9 )  in ( 6 )  and (1 1) gives a complete solution to the first auxiliary 
problem. We need only the expression for the normal displacement 
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Taking into consideration the relationship between the punch settlement wo and the 
applied to the punch force P (Fabrikant 1989) 

PH tanh( T O )  
WO = 

2 a e  

expression ( 3 1 )  can be rewritten as 

Problem 2. The boundary conditions in the case of a flat circular bonded punch 
subjected to a shifting force T and a tilting moment M are 

U = uO = constant for O s p s a  OS’<271 

w = -So cos d for O s o S a  O S d < 2 T  

LT=O 

7 = 0  for a s p s c o  0 s 4 < 2T. 

Here uo is the tangential displacement of the punch, and S is the angle of inclination. 
Again, by using a method similar to that used in problem 1 ,  we may verify that the 
equations (7) and the boundary conditions ( 3 4 )  can be satisfied by the potential 
functions 

F 1 -  4TH cosO{a ~ ~ { ~ , - [ l ~ ~ ( x ) - x ~ ] ~ ’ ~ } f ( x ) d x  
m1-1 P 

F 2 -  .lTH cos ‘[a I: { ~ ~ - [ l ~ ~ ( x ) - x ~ ] I / ~ } f ( x ) d x  
m2-1 P 

(35) 

2 y 3  sin 4 p 2  
A44 P 2a 2 

( / i 3  - a ’ )  1/2(2a2 - /* ) - - D- - [ z3a - 13 --sin-’ (t)] 
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Here f and f l  are the stress functions and D is a constant. They are defined (Fabrikant 
1989) as follows: 

t Ys( t ) - ea Yc( t ) + A Yc( t ) 1 6 cosh2( d) 
= - T’H sinh( r e )  

6 cosh( r e )  
7T’ H [ t Yc( t ) + ea Ys( t )] + tanh( ?re) A Y,( t ) f l ( t )  = (37)  

(39) 

Substitution of (35) in (6) and (11) gives a complete solution to the second auxiliary 
problem. We need only the expression for the normal displacement 

cos 4 
~ ( p ,  z)=47~H- 

P 

The displacements of the punch are related to the applied loading as (Fabrikant 1989) 

M 
(1 + 40’) tanh( d) 

e( 1 + e’) 
3 Ha 

4a2(1 + 0 ’ )  

s =  4a2( 3Ha 1 + e’)  (-T+ae&)* 

The main problem. Now we may apply the reciprocal theorem in order to obtain the 
punch displacements due to a normal concentrated force N applied at the point 
( p ,  0, z ) .  The normal displacement of the punch is readily available from (33) as 

NH sinh(r8)  mk 
W N  = c-  r a e  k = l  mk-1 

In order to find the tangential displacement of the punch, we have to apply a unit 
tangential force T i n  the positive Ox direction. From (36)-(39) and (41), one can find 
the stress functions as 

T G c o s h ( ~ 8 )  
47r2a( 1 + e‘ )  f ( x )  = 

(43) 
T G s i n h ( 1 r t 3 )  x 1-28’ 

(-3; Yc(x)+-  
f i ( x )  = 47r2a( 1 + e’) e 
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4 - 3 :  Yc(x)+-  -2e2 e Ys(x)) dx]}. 

We need to apply to the punch a unit tilting moment M in order to find the angular 
displacement S.  The stress functions in this case are 

and the angular displacement will take the form 

S N  = 
3 NH sinh( r e )  
. r r~3e (1  + ez)p 

Formulae (42), (44) and (46) are the main new results of this paper. 

3. Numerical example 

It is of interest to compare the influence of a concentrated load on a bonded punch 
to that of a smooth punch. The reader is reminded that the term smooth punch is 
used to indicate the type of punch which does not exert any tangential stress in the 
domain of contact. These two cases represent two extremes in the interaction between 
a punch and an elastic half-space, so the normal and angular displacements of a smooth 
punch due to a point load N applied at the point (p ,  0, z )  are (Fabrikant 1989) 

One should note that the solutions (42), (46) and (47), (48) coincide in the case of 
8 = 0. In the case of isotropy, this corresponds to the Poisson coefficient v = f. The 
greatest difference between the solutions for a bonded and a smooth punch is attained 
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for the Poisson coefficient v = O .  This value was used in numerical computations. 
Formulae (47) and (48) in the case of isotropy will take the form 

2( Z ( a 2  1 - v)( - w2 r: - I:)  ) wN =E( a sin-' (3 + 

a(Z: -a2) ' /2  z a 2 ( a 2 - I : ) ' / 2  ) s N = s p ( s i n - l ( t ) -  3 N H  
( 1  - Y ) l ; ( r ;  - I : )  . 

+ 
1: 

The limiting cases of (42) and (46) in the case of isotropy are 

[ x2  - I:( x ) ]  'I2 

G ( x )  - l:(x) 
( 1  - 2 v )  

2( 1 - U )  1: ( 
) Y s ( x ) d x ]  

z2[x*(2x2+2z2)-p2) - z:(x)] 
[ x 2 -  l:(x)]1'2[l:(x) - I:(x)]3 

+ 

x [4x2 - Z : ( X )  - 3 1 : ( ~ ) ]  [ x Y C ( x )  + aeY, (x)]  dx . 1 

(49) 

The results of computations are presented in figures 2 and 3. The full curves give the 
results for a bonded punch, while the broken curves give the corresponding data for 
a smooth punch. Figure 2 plots the dimensionless parameter w N / w 0  against p / a  
computed due to (49) and ( 5 1 )  for the values of z = O,O.l, 0.5 and 1. The parameter 
W O  = 7rNH/(2a)  corresponds to the settlement of a smooth punch subjected to a central 
loading equal to N. The plot shows that the settlement of a smooth punch is always 
greater (up to about 0.1 W O )  than that of a bonded punch. 

The plot of the magnitude of SN / 6' against p /  a is given in figure 3. Computations 
were made due to (50) and ( 5 2 )  for z = O,O.l, 0.5 and 1 ,  with S o =  3.rrNH/(4a2) giving 
the maximum angle of inclination of a smooth punch. The difference between the 
results for a smooth punch and a bonded punch does not exceed 0.088'. All the 
computations were made for the Poisson coefficient Y = 0. Since in real materials Y > 0, 
the difference between the smooth and bonded punch solutions will be smaller than 
that indicated above. 
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w / w  

1 . 0  

0. 8 

0 .  6 

, o  

0 .  4 

0 .  2 

0 

Figure 2. 
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Appendix 

The following integrals may be computed by the method described by Fabrikant (1989) 

-- - 2 n  In[ l2 + (I: - p') 'I2] 
a2 z 

azaa 

z In[ l2 + ( I :  - p')'/'] - a sin-' (A5) aa 

Yet another important integral is 

e-'*Opi dp, d4, 
J=[,*' {oa[zln(Ro+z)-Ro] ( a Z - p i ) ' / 2  

= n p  e 

Several partial derivatives may be computed as follows: 
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Here are some derivatives used in the paper: 

l’( 1: - a’)‘/’ ei+ 
A sin-’ (f) = - 

1: - c 1  

a’ a (a2-1f) ’ / ’  z [a2(2u2+2z2-p2) -1: ]  
-sin-’ az2 (f) = -G ( 1:- 1: ) = ( u2  - 1:) i: - 1 3 3  
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